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SUMMARY 
A mixed discrete Fourier transform-Finite difference algorithm is developed and used for the calculation of 
rapidly changing viscous fluid flows past a circular cylinder. The numerical approach has been designed to 
overcome certain difficulties arising for high Reynolds number simulations. The foremost advantage of the 
technique lies in its fast calculations of the convolution sums portraying the convective terms of the governing 
equations. Third-order spatial discretizations and fourth-order time marching are implemented. 

New schemes are proposed for the boundary conditions at the solid wall and at large distances. The 
techniques are tested on a case study with other schemes (summarized by Roache’) in order to obtain an 
optimal choice. Definite indications on the stability and accuracy of boundary condition schemes are 
achieved. Support for the statement of dominant importance of boundary conditions is also given. 

A comparison of computational results with experimental data is presented for the case study of the flow 
past an impulsively started cylinder at Reynolds number 20. 

The time development of the symmetrical zone of recirculation, which is formed at an early stage of the flow, 
has been studied for 300 6 Re 6 9500 by means of the proposed algorithm. Computational results, 
comparisons with experimental data’ and discussion of upper limits of validity of the procedure will be 
presented in a companion paper. 

KEY WORDS Navier-Stokes Discrete Fourier Transform Finite Difference Short Convolutions No-slip Boundary 
Condition Far Field Condition 

INTRODUCTION 

The research presented in this paper aims at developing an accurate algorithm for the calculation 
of unsteady two dimensional viscous flow past an impulsively started circular cylinder. 

Some questions still remain, especially for Reynolds number simulations, although several 
algorithms have been p r o p o ~ e d . ~ - ’ ~  These questions are related to: 

(a) The high accuracy required close to the solid boundary where the highest gradients of 
velocity and vorticity occur. An optimal choice of boundary conditions at the wall is crucial 
for global accuracy. 

(b) The efficiency of far-field boundary conditions, in particular if attention is focussed on time- 
dependent fields past an impulsively started cylinder. In such a case, in fact, vorticity is 
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initially null throughout the integration domain and is gradually convected and diffused 
from the boundary only after the start. 

(c) The capability of the algorithm to simulate hydrodynamic instabilities, which are 
experimentally shown in the wake of the body for R e > 4 0  after an early stage of flow 
development. Imposed odd symmetries of period 71 (either achieved by simulating the flow in 
the upper plane only or by expanding the flow fields in odd functions of sin no) would in fact 
suppress the phenomenon. 

(d) The influence of the grid systems and the time step at increasing Reynolds numbers. In fact 
such complex phenomena as birth, growth and decay of secondary vortices rapidly develop 
in early stages of the wake for Re > 300. Higher order of accuracy numerical methods are 
necessary for the study of such composite mechanisms.28 

Only three time-dependent simulations (those of Thoman and Szew~zyck '~  up to Re = 300,000, 
Pate124 up to Re = 600 and Ta Phuoc L o c ~ ~  up to Re = 1000) have reached high regimes. 

The numerical scheme for the solution of the Navier-Stokes equations, and the optimal 
boundary condition schemes presented in this paper aim at obtaining deeper insight into the 
nature ofinitial unsteady flows past the cylinder at high Reynolds number regimes. Hence, all of the 
above potential problems had to be faced with the additional constraint of tailoring all the tools to 
the available computational facilities (Purdue University's CDC 7600 computer, with a maximum 
allowance of CM 200,000 words for special jobs). 

A discrete Fourier transform (suitable for fast and accurate computations) of the flow fields 
permits elimination of forced odd symmetries of the velocity field. Fast algorithms for the 
evaluation of the convolution sums portraying the non-linearities of the model have been 
implemented. 29 

Efficient and conceptually appealing far-field boundary conditions at  infinity reduce noticeably 
the size of the integration domain, thus allowing for finer mesh sizes and higher resolutions. 
Boundary conditions for the updated value of the wall vorticity (summarized and critically 
discussed by Roache') are tested. Optimal conditions are pointed out: they are remarkably stable 
and at least third-order accurate. 

Tests of accuracy and convergence for the numerical approach have been performed for the flow 
past an impulsively started cylinder at Re = 20. This regime has long been studied, thus yielding an 
ideal test case for all computed scalar and vectorial fields. 

The mechanism of creation of secondary vortices in the early stages of flow past an impulsively 
started circular cylinder has been analysed by the proposed method for 300 2 Re 59500. The 
results and the comparison with experimental visualizations (yielding the basis for discussion of 
upper limits of validity for the approach) will be presented in a companion paper. 

MATHEMATICAL FORMULATION AND COMPUTATIONAL APPROACH 

The particular geometry of the problem suggests the following stipulations: 
(i) The radius R of the cylinder is chosen as length scale. 

(ii) The free stream velocity U ,  is chosen as velocity scale. 
(iii) The Navier-Stokes equations are cast in polar co-ordinates. 
The symbols used in the mathematical formulation are: 

r = polar co-ordinate (radial component) 
0 = polar co-ordinate (angular component) 

U ,  = velocity scale (velocity of the free stream) 
\y = stream-function scalar field 
t = time variable 
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V = kinematic viscosity of the fluid 
p = density of the fluid 

R = length scale (radius of the cylinder) 
Re = Reynolds number, defined as 2U,R/V 

With this notation the non-dimensional form of the Navier-Stokes equations, when expressed 
in terms of vorticity, is 

- I ap a 4  
where the physical quantities have been non-dimensionalized by the above scales as follows: 

- r Y 2 V , v = - = -  tR , z=-’ 
R’ Rum u, Re U,R 

p=-- ’  *=-. 

It is expedient to perform two transformations, both for conceptual and numerical reasons. 

(a) The logarithmic mapping of the radial co-ordinate r .  This transformation has been often 
These are: 

exploited in analogous calculations.109’3~’5.’7.24.t7.30 It defines 

p = e r  or g = l n p  (3) 
(b) The introduction of perturbation fields (deviation from uniform flow). Formally the symbol 

$ is replaced by t,b + ec sin 8, whereas vorticity is unaffected. 
The introduction of the above transformations yields the final form of the boundary value problem: 

On the surface of the body, the no-slip boundary conditions are 

* = - = - ‘  ’* sine for 4 = o a t  
and the conditions at infinity become 

If the stream function $(<, 8, t )  and vorticity ((<,8, t) are expanded in Fourier series as 

$(<, 0, t) = f I C / ~ ( ~ ,  WK’ 
K = ‘ W  
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where $-,((,t) = $;I(<,t) and C - , ( < , d ) =  [:((,t), and if (8) and (9) are substituted into both (4) 
and (5 ) ,  the following systems of equations are obtained (where, for brevity, (, = CK(<,  t) 
and $, = $K(t, t ) ) :  

aili 
at 

25- + Con v [iK$, I i',] - Con v [$:I i~ i , I  

(10) 
ec 
2 

+-(Conv [6(lcZ - l)li:] + Conv [iKB(K2 - l ) l i~ i , ] )  

- V([: - K 2 [ , )  = 0, K = - 03,. . ., 00 

$: - t i2$K = - e2cCK, K = - Q,. . ., cc (1 1) 

where, given any two functions F,(<, t )  and G,(<, t),  their convolution is defined as 
W 

Conv[F,(G,] = c F'KrGK-K' = f FK-K,GKr 
K , = - m  K c =  

The simultaneous solution of the coupled systems (10) and (1 1) with boundary conditions 

1 
$-  l(0, t )  = $'-l(o, t )  = - - 2 

and 
$& t )  = $;(O, t )  = 0 for =+ 1 

is equivalent to the solution of (4) and ( 5 )  with boundary conditions (6) and (7). 
In the approach just presented the 6' dimension has been discretized by Fourier series expansion, 

but the continuum 0 < 6' < 27c has been replaced by the discrete infinity K = 0, 1,. . ., i: 03. The 
necessary reduction of the range of tc to a finite value could be accomplished by series 
truncation,'69 17*24 but, in view of the algorithmic advantages introduced by it, the discrete Fourier 
transform (DFT) approximation has been used here. According to this approach, a function 
f((, 8, t )  is replaced by its sample chain fj(& t )  = f ( t , j 27 t /N ,  t) , j  = 1,. . ., N, and the Fourier series 
coefficient j,(<, t )  is replaced by the discrete Fourier coefficient yK((, t )  given by 

N -  1 N- 1 

where WN is the first Nth root of 1. If N is sufficiently large&(, t )  approximatesf,((, t )  for values of 
ti not too close to Nf2.  

The algorithmic advantages of the DFT (discrete Fourier transform) formulation with respect to 
the standard spectral method are constituted by the fact that its operations can be performed by 
means of the fast Fourier transform (FFT) a l g ~ r i t h m , ~  and that related non-cyclic convolutions 
can be performed very efficiently by the short convolution (SC) algorithm.29 

The approximation changes formally the systems (10) and (1 1): the symbols $ and C are replaced 
by $ and r, the range ti = - 03,. . . , Q is replaced by K = 0,. . . , N - 1, and the operator Conv [ 11 
is replaced by 
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S 5 . r  N = -  3 z N 3 
2 2 2 2 where F ,  = F,for 0 I K 5-- 1, F ,  = F K P N  for-N + 1 S K I 2 N  - 1 and F ,  = Ofor- 5 K I - N ,  

and analogously for 8,. 
The operator NCConv (non-cyclic convolution) can be treated as an ordinary convolution sum 

by appending zeros to the arrays to convolve. The short convolution (SC) algorithmz9 has been 
implemented for the fast calculation of non-cyclic convolutions, allowing also for slight reduction 
in storage requirements. 

The equations to solve numerically are therefore 

83, 
at 

eZt- + NCCon v [ i~$ , l?~]  - NCConv [ $ ~ I ~ I c ~ , ]  

N 
2 - v ( ~ ~ - I c ’ ~ , ) +  R,=O, K = O ,  ...,--- 1 

where 

and where R[ ] stands for ‘real part of‘, and 
- r,, K = 0,. . ., N/2 - 1 (17) $: - K 2 $ ,  = - e2C 

The boundary conditions are formally given by (13) where $ is replaced by $. 
The spectral reduction of the Navier-Stokes equations to the system (16) and (17) transforms the 

mathematical problem into a time dependent boundary value problem in the variable 5 which is 
amenable to a classic computational approach. The solution starts with the establishment of initial 
conditions for the complex fields $,, r,. The computational cycle begins by implementing some 
finite difference equation analogue of the partial differential equation for the Fourier coefficients. 
The values of the time derivatives of vorticity are used to obtain the vorticity field at a new time 
level. Such updated values allow the solution of (17), with the constraints of far-field and no-slip 
boundary conditions. The last step in the computational cycle consists of the calculation of new 
values of r, on the boundaries of the domain, usually endowed with the greatest spatial variations 
and affected by non-centred approximations. 

Two types of discretizations are therefore needed: 
(a) spatial discretization for the evaluation of the derivatives of rK and GK 
(b) time discretization for time advancement. 
As far as step (a) is concerned, if a field rK is given, the derivatives f and f are estimated by 

five-point centred finite difference schemes. These are (let fi = f(iA<) = - e-2iACr,(iAt): the index IC 
has been dropped for ease of notation): 

(i) for the boundary points ( i  = 0): 

+ 0 ( A t 3 )  (19) 
35 f o  - 104 f + 114 f z  - 56 f 3  + 1 I f4  

12A5’ 
f;= 
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(ii) for the points next to the boundary ( i  = 1): 

f ;  = 1lfo - 2 0 f l +  6 f 2  + 4f3 - f 4  + 0(At3) 
12At2 

(iii) and for all the other points i :  

+ Wt3)  - f i p 2 +  16fi-l-30fi+ 16fi+l-f i+2 
1285’ 

f ” =  

Some static instabilities are intrinsic to the five-points schemes (20), (24). Their application only 
at one spatial location (i = 1) and results of experimental error analysis reported elsewhere32 justify 
their use. 

It is to be noted that, in the actual simulation, the sensitivity of the results to discretization of the 
interior field turned out to be much less than to boundary conditions. Thus it is possible that 
simpler finite difference schemes than (18)-(23) would have sufficed. 

A somewhat different procedure has been used to evaluate the first derivative of GK. In fact, a 
truncated Taylor expansion about the ith point for the variable qK yields, upon substitution of the 
:onstitutive equation of vorticity (17), 

1 (pi+ - Gi(l  + 7c2At2/2 + ~ ~ A t ~ / 2 4 ) / A t  

Equation (24) is appealing from the computational viewpoint since fi,- __ and 3, have 

previously been calculated for all values of i. 
As far as time discretization is concerned, error considerations (truncation, round-off and 

propagation errors) suggest the use of algorithms of an order higher than the first. In fact, the 
accuracy of the integration procedure for the linear elliptic stream-function equation yields 
acceptable errors already for A t  N 0.1 for any wave number K .  An approximate stability analysis of 
von Neumann type, performed by neglecting the convolutive terms in equation (1 7), yields the 
stability criterion 

a f /  a t  i’at2 a2fl 

At < p(.-)At2Re (25) 

once the spatial discretizations (22) and (23) are enforced. The function p(k) decreases with 
increasing wave numbers and therefore the wave-number cut-off N/2 is the most demanding. The 
relationship between p and N/2 is 

12 
p(N/2) = 30 + 12(N/2At)’ 
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Hence for Re = 20, and a standard cut-off N/2 = 16, an error O(At) at the maximum stable time 
step is consistently higher than the error predicted for the solution of (17). A second-order 
procedure (of the Adam-Bashforth type) yields a stability requirement: 

At < 0.18533(Ac)2Re (27) 

which, in turn yields for the test case an O(A.t)’ = O(At4Re2) error which might be large for high 
Reynolds numbers. For these reasons a standard fourth-order Runge-Kutta scheme has been 
implemented. 

The order of truncation is O(At4) = O(Ac*Re“), which leads to an accuracy which is deemed 
satisfactory for the study of rapidly evolving phenomena. 

The last part of the computational cycle consists of the evaluation of updated stream-function 
fields via (17). The procedure relies on implicit finite difference schemes for the discretization of the 
second derivative of the kth coefficient d 2 $ , / a t 2  in (17). The scheme chosen is (23). Substitution 
into (17) yields 

-$ i -2+16$ i -1+( -30-12k2AtJ2)$ i+16$ i+ l  - $ i + z =  -12A[2e1iAc” 4i (28) 

where Ti = Tk(iAt) for homogeneity of notation. 
Therefore the solution for $i, i = 1 , .  . ., M (where M is the total number of stations along the 5 

direction) constitutes a complex linear system of equations which can be solved efficiently by 
standard techniques. The complex matrix of the coefficients is symmetric and banded (the 
bandwidth is equal to 2) but no use has been made of the potential symmetry of the matrix allowing 
for imposition of far-field boundary conditions. Since 3, and a$/a<(, are given as boundary 
conditions (arising from non-slip conditions at the solid boundary of the cylinder) and since the 
values of fi , f : , fy  are known at each time step, a suitable value of $, can be obtained by high- 
order Taylor expansion suitably modified by substituting (17) and its derivatives. Hence the value 
of $* would contain updated values of f l  ,f; ,fy, whereas most authors use calculated values of the 
stream function to connect vorticity at the wall. The special section on boundary conditions will 
develop this point further. 

A modification of the solution procedure can be introduced if the boundary condition for the 
vorticity at  the solid wall is evaluated in time via a discrete set of values of the stream function close 
to the boundary (later referred as J e n ~ e n ’ s ~ ~  or Briley’s3’ conditions). In such cases, in 
fact, the evaluation of q2 via Taylor’s expansion ‘downdates’ the values of $ and often yields fatal 
instabilities. Following the procedure of Briley3’ (and the suggestion of Roache’), the connection 
between stability and ‘consistency’ of the adopted schemes is established for az$/at2 I,,,+ with the 
same truncation order of the centred scheme adopted elsewhere. Some additional programming 
effort is required because one term further from the neighbouring nodes of the usual bandwidth is 
introduced in the matrix equation. Nevertheless a simple Gaussian modification can remove the 
added implicitness at  the first row. 

The system can be solved efficiently if the complex matrix is preprocessed in order to factor the 
coefficients in a way appropriate to pivotal routines. Efficient solving routines require only the 
storage of one array whose dimension is (5, N ) ,  allowing therefore for only slightly larger storage 
than any explicit technique of solution. Even though the CP time required on a CDC 7600 for 
solution is about 20 per cent larger, with N/2 = 16, than in the analogous case of other explicit 
solutions,32 the results computed by implicit techniques turned out to be much more accurate36. 
The decomposition method chosen has been that of Thomas. 

The total drag and pressure coefficients, both at the cylinder’s surface, have also been calculated. 
According to the system of reference chosen and with the usual notation, the time-dependent drag 
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coefficient is 

D being the total drag on the body. 
The values of the steady-state pressure coefficients P(0)  (here defined as P(0)  = (p(0 ,O)  

- P,)/$pU',; p ( ( , O )  is the steady state pressure in the fluid; par, is the uniform pressure at large 
distances from the cylinder) are 

where P,  is the front stagnation pressure coefficient, obtainable by direct integration of the Navier- 
Stokes equations along the front stagnation streamline. The result is 

The integrals (30) and (31) can be evaluated by numerical techniques 

131) 

of suitable accuracy. 

BOUNDARY CONDITIONS 

Any known attempt to simulate accurately the flow past a circular cylinder has been shown to be 
very sensitive to the imposition of boundary conditions. As it has been pointed out in the literature' 
the key factors can be found in: 

(a) the implementation of reasonable conditions at large distances (far-field boundary) 
(b) the implementation of boundary conditions at the surface of the cylinder. 
In particular, even though conceptually time marching would suffice for the determination of 

updated values of wall vorticity, combined effects of high gradients and non-centred approxi- 
mations require the imposition of boundary conditions for [ at the solid surface. The importance of 
such a condition (see reference 1 for a comprehensive review of various methods) is considered 
dominant. 

Far-field boundary conditions 

Fornberg" showed the vital influence of far-field boundary conditions on the accuracy of 
steady-state calculations. Among other interesting results, Fornberg considers the imposition of 
the free-stream condition ($ = 0 at t=  E m )  as unnecessarily restrictive since it has to be imposed at 
very large distances from the body for accurate results. Similar conditions (such as the imposition 
of d$/ag = 0 at  5 = to obtained by adding extra rows of equal values of the function) have been 
shown not to improve substantially the goodness of the simulation with noticeably shorter 
integration field." 

Asymptotic formulae for $ and [ have been obtained at  large distances from the solid boundary 
by means of an Oseen type of approach which partially accounts for inertial terms.37 The leading 
terms for $ and [, which are given as a function of Reynolds number and of the total drag 
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coefficient, hardly match the spectral reductions (8), (9). Fornberg’s’’ ‘mixed’ condition also does 
not easily suit a spectral reduction. 

Although high accuracy can be achieved both by imposing an efficient ‘mixed condition and 
reaching fairly large outer field distances, a new approach tailored to the flow past an impulsively 
started body has been used in the present 

Since the general solution of (17) is 

$ = g(.f) + Be-kr  (32) 

g ( f )  being the particular integral, it is to be noted that at large distances from the body the values of 
f =  -e2<tK are negligible. Spatial decay of vorticity is in fact much more rapid than the 
corresponding decay of the perturbation field of the stream function, and therefore an approximate 
solution at large distances is $ = Be-“<, or the solution of the homogeneous analogue of (17). This 
yields directly 

(33) - 2kAc 
$M + 1 = $Me-KAr, $M + 2 = $Me 

which constitute a set of conditions less restrictive than the assumptions t+hM+ = $ M + 2  = 0 or 
$ M +  = $ M + 2  = $M. Substitution in the matrix of the coefficients yields the final form of the linear 
system of equations to be solved by efficient factorization routines. An interesting feature of this 
condition is that the integration field can be drastically reduced with an ‘exact’ boundary value in 
cases-such as that of the impulsively started cylinder-in which vorticity is initially zero 
throughout the field. As vorticity (produced at the solid boundary, and then convected and diffused 
throughout the field) spreads away, the integration field must be enlarged proportionally, but fast 
diffusion rates due to viscosity confine the region of non-null vorticity within a strip much 
smaller than the perturbation field. A substantial saving of computer time and storage 
requirements can therefore be achieved. 

Boundary conditions at the surface of the cylinder 

The implementation of the no-slip condition for $,(O) and $:(O) is straightforward; the first row 
of the arrays is, in fact, set to zero except for the second mode, whose imaginary part is 1/2. 

The evaluation of the wall vorticity, instead, is difficult and extremely important because vorticity 
is produced at the solid boundaries. High gradients and non-centred approximations affect to a 
great extent both accuracy and stability of such values (mirror-image approaches, in fact, eliminate 
non-centred approximations with only an illusion of higher order accuracy). Wall vorticity can be 
formally obtained in several ways, some of which will be briefly outlined below. 

Method 1 Vorticity at the wall is directly obtained from the no-slip condition. This method is 
derived from the idea of Thom, conceived as early as 1928 in its first-order formulation. 

The stream function $,(iA() (the “sign and the K index are dropped for convenience ($,(iA() 
= $.). 1 )  f .  I = - eZiA5rK(iA()) is expanded in a Taylor series about i = 0. Truncation at the first order, 
substitution of (17) (t+b0 and a ( / d c l o  are given as boundary conditions), and rearrangement yield 

which is the first-order accurate evaluation of wall vorticity. It is reported to be a reliable tool, often 
less error-prone than higher order methods.’ 
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Method 2. A second-order approximation, directly derivable from (34) with second-order 
truncation, has been obtained, with some further refinement needed because of the presence of 
af /d<lo.  Woods39 suggested its evaluation by means of a first-order backward difference: even 
though the method has given good results, some destabilizing effects have also been reported.’ 

The method has been tested in two forms (first derivative as Woods’ scheme and as (18)) yielding, 
respectively, 

and 

Method 3. Another term of Taylor expansion (34) can be included. Some further refinement 
problems become manifest because of the introduction of the term involving a2 f /at2 l o .  Instead of 
assuming other available approximations34q35 (reported in Reference l), for consistency the 
second derivative of vorticity at the wall has been evaluated via (19). The result is 

1 -&$lo( 1 + ~ ~ ? ) - 2 8 8 ( 8 8 1 ’ - 3 0 f 2 +  1 136f,-89f4) +O(AY3) (37) 

Method 4. This method is a modification of Briley’s approach (as in Reference 1) .  From the 
presentation of methods 1-3 one can infer that the main drawback of such approaches lies in the 
need of evaluating a flat l o  and a2f /d5210 at the boundary for orders of truncation higher than 
O(A5). Non-centred schemes seem to yield static instabilities which may cause solution instability. 
A consistent approach for eliminating such influences in the calculation of f o  consists of the 
following procedure. The Taylor expansions for $ in terms of At,  2A5, 3A5, are taken and (17) is 
substituted. ‘Consistency’ according to Briley requires that the order of truncation for the value of 
f o  be the same in the evaluation of d$/d{ and dZ$/d(’ at w + 1 .  A third-order approximation 
which is not affected by skewed evaluations of d2 flat’, d f l a t  must be a linear combination 
C I $ ~  + plCIz + y$ ,  such that 

c c 4  9 
6 3  2 
- + - p  + -y  = 0 

cc 2 27 
24 3 8 
- + -p + -y = 0 

which yields, after substitution and some algebra, 
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Equation (39) is a rewriting of equation (3-443) of Roache’s book,’ quoting Briley’s work where the 
differences are due to the different boundary conditions. Following Roache,’ a ‘consistent’ 
modification of the finite difference approximation for $ at w + 1 has been implemented, as 
described in the computational approach. 

Method 5. Vorticity at the wall is obtained from an integral relationship. An analogous 
approach has been reported by Dennis and Chang,I7 and it has been suited to the present needs by 
modifications due to the difference in boundary conditions. 

From (17), with the usual notation, we can write 

$: - t i 2 $ ,  = f, 
with 

i 
$,(o) = $L(o) = 2’ for ti = 1 

$,(o) = $L(o) = 0, for ti # 1 

If the inner product of (40) with respect to ( le-kC) is taken, integration by parts yields 

Equation (41) is an integral relationship involving all the values of the vorticity from the wall to the 
far boundary. When the left side of (41) is calculated by means of any numerical quadrature formula 
over the grid lines of constant {, it gives a formula for f o  in terms of all the other grid values of f k ( { )  
for 5 # 0. One of the features of the method is that wall vorticity can be calculated by integration 
right throughout the field rather than from a few isolated values of $ near < = 0. High-order 
integration schemes can be used for accurate evaluations off,,. In particular, if fourth-order Cotes’ 
formulae are used, we obtain 

f o =  - 

where j = 4i - 3, ci = 1, if i # 1, ci = 0 if i = 1. 
Several other methods have been tested, in order to investigate suitable corrections to both 

values of fi at the wall and at the near point, also affected by non-central difference schemes. As an 
example, a ‘mixed’ geometrical and integral method can be obtained if equations (34) and (42) are 
solved for f o ,  f l .  The results have been presented in a previous report.36 Geometrical 
approximations yielding the boundary value f o  have been tested in order to smooth out possible 
errors (due to non-centred approximations for 5 at w + 1) by means of curve fitting by least squares. 
Since (16) can be solved at the solid boundary (with imposition of no-slip conditions), the joint 
imposition of (17) yields a system of equations involving r,(O), ri(O), $:(O) at each time step. Both 
equations can be used to update the boundary condition for vorticity, provided that satisfactory 
hypotheses are made in order to represent the key values p(0, k )  and $“(O, k).  As an example, 
parabolic approximations have been tested and discussed in a previous 

RESULTS AND DISCUSSION 

The flow fields induced by an impulsively started circular cylinder at Re = 20 have been calculated. 
The numerical experiment aims at a twofold objective: to test the ability of the algorithm to reach 
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a steady state and to check the accuracy of the solution by comparison with analogous 
experimental or numerical  result^.'*^^^^^ 

In particular several tests have been imposed on: 
(a) the influence of the radial step of integration AC, and the time step At related by stability 

(b) the influence of the boundary conditions for rx(O, t). 
(i) geometrical parameters: time evolution of the main features of the bubble wake (including 

length, width and angle of separation) 
(ii) kinematic and dynamic features: time evolution of contour lines of vorticity and stream 

function; time evolution of wall vorticity; time evolution of total drag; relative pressure 
distribution at the solid boundary. 

For all these quantities extensive experimental or numerical results have been reported in the 
literature. The basic reference for geometrical parameters has been the paper of Coutanceau and 
B o ~ a r d , ~ ’  in which a detailed experimental visualization of flow patterns evolution has been 
presented. Several numerical results are available for the flow at Re = 20: the time-dependent 
studies of Kawaguti and Jain7 and Collins and Dennis” are used for comparison. Steady-state 
parameters have been obtained by Takami and Keller,’ Nieuwstadt and Keller,” Dennis and 
Chang,’ TaZ3 and F~rnberg.’~ 

The number of modes chosen for the simulation has been 25 = 32 (the related cut-off is N / 2  + 

criteria 

The comparison with experimental and numerical results has been performed on: 

K 

E 

Figure 1. Stream function and vorticity fields with spectral representation at t = 1.0 (Re  = 20) 
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1 = 17). The size of the integration domain has progressively been enlarged according to the 
properties of the new far field condition for $Jtrn) until a maximum radial length 5, = 2Il (which 
corresponds to a radius Y = 565 R )  has been reached. The overall CP time per time step on the CDC 
7600 of Purdue University is 20s with 17 modes and 32s with 33 modes. 

The main results of the calculations for A t  = n/64 and for the 'optimal' boundary conditions are 
shown in Figures 1-3. Time evolution of streamlines, of stream-function spectral representation, of 
contour lines of vorticity ( and of related spectral representations are illustrated in Figures 1-3 for 
t = 1,1.5 and 7.25. The spectral representations (Figures 1-3) are particularly useful in ascertaining 
the effectiveness of the wave-number cut-off, An insufficient number of modes would in fact result 
in the damming up of energy at the high mode boundary which could easily be detectable on the 
graphic display. 

Figure 4 illustrates the convergence properties of the calculated fields for three different values of 
A t .  The parameter chosen to portray convergence is the integral SZ of vorticity at  the solid wall*. 
Wall vorticity is in fact traditionally considered one of the slowest parameters to converge, and 
generally the most sensitive. 

Figure 2. Stream function and vorticity fields with spectral representation at t = 1.5 (Re = 20) 

* This parameter is defined as 

52 = C [""'(O, k )  - c(0, k )  
- N'2 Ni2 I 
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K 

E 

Figure 3. Stream function and vorticity fields with spectral representation at t = 7.25 (Re = 20) 

8 
f '  1 2 3 4 5 6 

Figure 4. Time evolution of the test of convergence for the study case Re = 20 
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From the results of Figure 4 we can infer that even though convergence to steady state (for which 
R would be identically zero) has not yet been reached, the ability of the algorithm to reach a steady 
solution at  some larger times seems certain. Furthermore, convergence is reached at earlier times 
for most parameters when 12 z lop3. 

Time evolution of the close-wake geometrical parameters 

Figure 5 illustrates the evolution of the non-dimensional closed-wake length LID at Re = 20. A 
coarse radial mesh size ( A t  = II/24) has been chosen at first, in order to test the effect of different 
boundary conditions for the wall vorticity. The first-order boundary condition (method 1) yields a 
convergent and fairly inaccurate solution, the steady length of the wake being 25 per cent larger 
than the average experimental and numerical results. The second-order approximations of 
methods 2,3 turned out to be extremely unstable in any configurations and had to be dropped for 
t < 0.2. It is interesting to point out that method 4, which consists of the third-order approximation 
for such a boundary condition (‘consistent’ according to Briley and Roache’s definition), yields 
much more accurate lengths of the wake for the early stages of its development. Unfortunately at 
t = 3 the bubble wake collapses (a phenomenon similar to an aspect ratio effect), yielding a fatal 
instability of the solution. The implementation of method 4 has been tried also for A< = 71/64 with 
analogous results (Figure 5).  Since this method has some analogies with Woods’ three-point 
method (as in Reference l), it seems plausible that the same unstable behaviour should have been 
detected by the investigators who made use of it (for instance Panniker and Lavan22). No mention of 
‘late’ instabilities is made in such papers, although some calculations, interrupted at seemingly 
arbitrary times, suggest that similar problems might have surfaced later. Best results have been 
obtained by implementing method 5. The integral relationship weighting all values of vorticity to 
obtain the boundary value is stable and at  least third-order accurate (as the early stage of the length 
seems to infer). Such a boundary condition is also appealing from the physical viewpoint, since 
vorticity is created instantaneously at the start of the motion: the integral property respects this 
fact, making use of the boundary conditions even when vorticity within the outer field is 
everywhere null. Any other method (either implementing geometrically consistent corrections, or 
corrections on both points affected by non-centred FD schemes) turned out to be very unstable and 
had to be dropped before t = 0.5. 

Method 5 has therefore been chosen for all other calculations. The overall accuracy of the 
procedure has been tested via a sequence of simulations with reduced mesh sizes A t .  The values 
chosen are At=n/32, 71/48, 71/64, and the corresponding At have been calculated via the 
approximate stability relationship. The results of the calculations are shown in Figure 5, where the 
solid line portrays Coutanceau and Bouard’s4’ extrapolation for the aspect ratio A = 0. Kawaguti 
and Jain’s time dependent results’ have also been reproduced. Discrepancies with experiments at 
larger A( can be explained by the strong dependence of the wall vorticity on the radial step A t .  It 
seems, in fact, that overestimated values of vorticity at  the rear of the body greatly affect the length 
of the bubble wake. It is interesting to observe that different procedures, as far as truncation order 
and numerical schemes are concerned, yield approximately the same results only because the radial 
step A( chosen has been roughly the same. Further support is obtained by Collins and Dennis3’ 
once their calculations (achieved by a Crank-Nicholson implicit scheme far more sophisticated 
than Kawaguti and Jain’s second-order scheme) have been compared with those of Kawaguti and 
Jain’ at Re = 40 with the same radial step A(, a close evolution of the length is obtained. Roache’s’ 
statement about fluid dynamic simulations being dominated by boundary conditions is to the 
point: the accuracy of numerical results seems to depend more strongly on accurate imposition of 
boundary conditions than on refinements of inner field discretization schemes. 
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Figure 6. 

60" 

50" 

40" 

30" 

20" 

0 Present work 

10" 

10 t' 1 2 3 4 5 6 7 8 

Evolution of the separation angle 8, according to Bouard and Coutanceau," to Fornberg" and to the present 
work 

Figure 7. 
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is good in comparison with the experimental results mentioned earlier. 
Steady state asymptotic solutions have been plotted as well. They range from LID = 0.90 to 

approximately LID = 010. 
Figure 6 shows the development of the separation angle 6, (corresponding to the separation of 

the main flow from the wall of the cylinder) for A t  = 71/64 (and a choice of method 5 for the 
boundary condition). The early development of 8, does not match the experimental results of 
Coutanceau and Bouard but the laboratory measurements are not very trustworthy during the 
initial stage of the flow (quoting the authors) due to very small values and abrupt growth of the 
wake at t = 0.5 so that cumulative errors are reported to result in length and time measurements. In 
the present calculations the angle 8, is measured at the null value of wall vorticity. Later the 
calculated separation angle matches the measured 6, curve (the asymptotic value 8, = 44.98" 
matches, in fact, both experimental and numerical results). 

Further comparisons 

Figure 7 shows a comparison of the steady-state wall vorticity distribution with the numerical 
results of Dennis and ChangI7 and F ~ r n b e r g . ~ ~  The agreement with the present results for A< = 
71/64 is considered satisfactory. Figure 7 also presents the wall vorticity distributions at t = 14.25 
for the present simulations using A< = 71/16 and A< = 71/32. The overestimation of vorticity at 
larger mesh sizes is manifest. 

2.0 

1.5 

C,(8 1 

1 .O 

0.5 

0 

-0.5 

-1.0 

-1.5 

-2.0 

t- 
Present work - 

I 1 I 

s/4 T I 2  3s/4 8 s 

Figure 8. A comparison between steady-state pressure coefficient distribution at the cylinder's surface (Re = 20) 
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Figure 8 shows the steady state pressure coefficient at the body’s surface, as compared with 
Fornberg’s calculations. The calculated results for the front stagnation pressure coefficient C,,(C,, 
= 1.29 for A( = n/64) respect also the limit law which rules the viscous overpressure at the 
stagnation point.32 An excess of vorticity in the back of the cylinder (apparently responsible also 
for longer wakes for A< > 71/64) creates an excess of negative pressures in the rear zone, noticeably 
reduced at A< = n/64. The overall agreement is nevertheless deemed satisfactory. 

The calculated of total drag coefficients are presented in Table I for the coarser and the ‘optimal’ 
mesh size. The calculated drag coefficients are compared with analogous values found in the 
literature for the case study at Re = 20. 

CONCLUSIONS 

The paper deals with development and calibration of an algorithm for the calculation of unsteady 
viscous fluid flow about an impulsively started cylinder. 

The algorithm consists of a discrete Fourier transform expansion of the flow fields. The 
procedure makes use of fast numerical methods for the evaluation of non-linear convolution sums 
which portray the convective terms of the Navier-Stokes equations in Fourier space. The two 
coupled second-order parabolic and elliptic differential equations for Fourier coefficients have 
been solved by finite difference techniques. 

Suitable boundary condition schemes at the outer field and at the solid wall have been studied in 
order to point out a seemingly optimal choice for the numerical simulations. 

The numerical approach, which has been designed to overcome certain numerical difficulties 
for high Reynolds number simulations, has been tested via the calculation of the flow past an 
impulsively started cylinder at Re = 20. This regime has, in fact, received much attention, hence 
yielding an ideal test case for all scalar and vectorial fields. 

Time development of the symmetrical standing zone of recirculation, which is formed in the early 
stage of the flow, has been studied for 300 I Re I 9500. Even though optimal choices for Re = 20 

Table I. Comparison among values of the drag coefficients at Re = 20 

Drag 
Author Comments coefficients 

Thorn3 

Dennis and Chang” 

Takami and Kelleri5 

Tritton4’ 
Nieuwstadt and Kellerlg 

Present work 

Present work 

Present work 

Arithmetical solution 
(hand calculation) 
Numerical solution 
(time dependent calculations) 
Numerical solution 
(time dependent calculations) 
Experimental measurements 
Numerical solution 
(steady state calculations) 
Numerical solution 

(A< = J64) 

(At = x/16) 

2.180 

2.045 

2.003 

2.100 
2.053 

2.010 

2.092 

2.331 

2.783 



968 ANDREA RINALDO AND ALDO GIORGINI 

may not be optimal for Re as high as 9500, comparison of computed results with experimental 
visualizations has been f a ~ o u r a b l e . ~ ~  Results of the simulation and discussion will be presented in a 
companion paper. 
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